satlas.stats.fitting.chisquare_fit¶
-
satlas.stats.fitting.
chisquare_fit
(f, x, y, yerr=None, xerr=None, func=None, verbose=True, hessian=False, method='leastsq')[source]¶ Use a non-linear least squares minimization (Levenberg-Marquardt) algorithm to minimize the chi-square of the fit to data x and y with errorbars yerr.
Parameters: - f (
BaseModel
) – Model object containing all the information about the fit; will be fitted to the given data. - x (array_like) – Experimental data for the x-axis.
- y (array_like) – Experimental data for the y-axis.
- yerr (array_like) – Uncertainties on y.
Other Parameters: - xerr (array_like, optional) – Uncertainties on x.
- func (function, optional) – Uses the provided function on the fitvalue to calculate the errorbars.
- verbose (boolean, optional) – When set to True, a tqdm-progressbar in the terminal is maintained. Defaults to True.
- hessian (boolean, optional) – When set to True, the SATLAS implementation of the Hessian uncertainty estimate is calculated, otherwise the LMFIT version is used. Defaults to False.
- method (string, optional) – Sets the method to be used by lmfit for the fitting. See lmfit for all options.
Returns: success, message – Boolean indicating the success of the convergence, and the message from the optimizer.
Return type: tuple
- f (