satlas.models.models.PolynomialModel¶
-
class
satlas.models.models.PolynomialModel(args)[source]¶ Constructs a polynomial response.
-
__init__(args)[source]¶ PolynomialModelcreates a general polynomial of the order given by len(args)-1. The given coefficients are ordered lowest to highest order.Parameters: args (iterable of values) – Iterable containing all the values for the coefficients. Polynomial order is determined by the length. args[0] is the coefficient of order 0, etc...
Methods
__init__(args)PolynomialModelcreates a general polynomial__call__(x)display_chisquare_fit([scaled])Display all relevent info of the least-squares fitting routine, if this has been performed. display_mle_fit([scaled])Give a readable overview of the result of the MLE fitting routine. get_chisquare_mapping()get_lnprior_mapping(params)get_result([selection])Return the variable names, values and estimated error bars for the parameters as seperate lists. get_result_dict([method, scaled])Returns the fitted parameters in a dictionary of the form {name: [value, uncertainty]}. get_result_frame([method, selected, bounds, ...])Returns the data from the fit in a pandas DataFrame. save(path)Saves the current spectrum, including the results of the fitting and the parameters, to the specified file. seperate_response(x)Wraps the output of the __call__in a list, for ease of coding in the fitting routines.set_boundaries(boundaryDict)Sets the boundaries of the fitparameters as supplied in the dictionary. set_chisquare_mapping(mappingDict)Sets the prior mapping for the different parameters. set_expr(exprDict)Sets the expression of the selected parameters to the given expressions. set_literature_values(literatureDict)Sets the lnprior and chisquare mapping to handle the given literature values and uncertainties. set_lnprior_mapping(mappingDict)Sets the prior mapping for the different parameters. set_value(valueDict)Sets the value of the given parameters to the given values. set_variation(varyDict)Sets the variation of the fitparameters as supplied in the dictionary. Attributes
params-